Automatic Dependent Surveillance – Broadcast (ADS-B "Outputs") Overview

Pete Skaves & Rob Duffer, AIR-130 Avionics Branch, January 25, 2006

Briefing Objectives

ADS-B "Outputs" presentation overview:

- ✓ Aircraft Surveillance Mandates Current & Proposed
- ✓ RTCA Minimum Operational Performance Standards (MOPS) for Transponders
- ✓ Technical Standard Orders (TSO) for Transponders
- ✓ Required aircraft avionics wiring connections to transponders for ADS-B "outputs"
- ✓ ADS-B "outputs" air-to-air considerations
- ✓ ADS-B "outputs" air-to-ground considerations
- ✓ ADS-B "outputs" Navigation Vs. Surveillance avionics dependency issues
- ✓ ADS-B "outputs" System Safety Assessment Pro-
- ✓ ADS-B "outputs" own-ship position source(s)
- ✓ Discussion and wrap-up

Recent Surveillance Mandates

- > Elementary Surveillance (ELS): 2003
 - European Mandate
 - ✓ Air-to-Ground application
- > Enhanced Surveillance (EHS): 2005
 - European Mandate
 - ✓ Air-to-Ground application
- ➤ FAA Advisory Circular 120-86 "Aircraft Surveillance systems and Applications" has invoked JAA guidance material in support of the European mandates

Current Aircraft Surveillance Reporting Configurations

Aircraft ADS-B "Outputs" Road Map

- ➤ Publish TSO C166A to invoke RTCA DO-260A to correct the following discrepancies:
 - **✓** Correct reporting of position integrity & accuracy
 - Current XPDRs can report high integrity for GPS position even though onboard GPS is reporting low integrity Mode A Code broadcast capability
 - A significant portion of US domestic fleet does not have Flight ID capability and need Mode A broadcast Version number in ADS-B broadcast
 - Ground station will now be able to identify aircraft broadcast capability

RTCA MOPS Transponder Issues

- RTCA DO-260 Vs. DO-260A "MOPS for 1090MHz Extended Squitter ADS-B and Traffic Information Services – Broadcast (TIS-B)
 - ✓ RTCA DO-260 has been superseded
 - ✓ Navigation Uncertainty Category (NUC) should be replaced by Navigation Integrity Category (NIC), Navigation Accuracy Category (NAC) and System Integrity Level (SIL)
- Transitioning from RTCA DO-260 to RTCA DO-260A will require avionics upgrades
- Upgrades will be required when ADS-B mandates are in effect

260 vs. 260A transponder: Simplified Differences Diagram

- EPU (Estimated Position Uncertainty) radius of a circle, centered on the reported position, such that the probability of the actual position being outside the circle is 0.05. NAC reports EPU bound.
- 2. Rc (Integrity Containment Radius) radius of a circle, centered on reported position, within which the true position is assured to lie (The probability of of exceeding Rc without alerting is reported by the SIL (Surveillance Integrity Limit Parameter)).

7

ADS-B "Outputs" and Global Harmonization

Transponder Capability and Compliance

ELS / EHS & Basic Compliance			ES (ADS-B-Out) Compliance	
	ELS/EHS & Basic XPDR DO- 181C/ ED-73A	ES (ADS-B-Out) Capable	ADS-B DO-260 (old)	ADS-B DO-260A (current)
ACSS (XS-950) 7517800-11006	Yes	Yes	No	No
Collins(TPR-901) 822-1338-003	Yes	Yes	No	No
Honeywell(TRA-67A) 066-01127-1602	Yes	Yes	No	No

Note: Currently, transponders are not required to comply to ADS-B standards

Standardization of Aircraft ADS-B Outputs Definition(s)

- ➤ The definition of ADS-B "outputs" has not been standardized
- > The following surveillance functions are often confused as the standard for ADS-B "outputs"
 - **✓** European ELS/EHS surveillance program
 - **✓** The Capstone ADS-B program
 - **✓** Australian ADS-B program
 - **✓** Traffic Information Surveillance Broadcast (TIS-B)

> Summary

- ✓ ADS-B "outputs" industry standards (e.g., TSO-C166A) have not yet been invoked by the FAA
- **✓** Recommend that TSO-C166A be issued to invoke RTCA DO-260A
- **✓** Update Surveillance AC 120-86 to incorporate this new standard

Harmonization of Aircraft ADS-B Outputs Definition(s) with ATO

- ➤ Harmonization of Aircraft ADS-B "outputs" with the Air Traffic Control Organization (ATO) is required for air-toground operations
- > ADS-B "output" message set parameters for safety, performance and interoperability should be harmonized with both domestic and international regulatory authorities

Aircraft Wiring Connectivity for ADS-B Outputs

- The transponder installation and certification costs for ADS-B "outputs" will be greatly impacted by the aircraft avionics configuration
 - **✓** Classic airplanes without GPS and FMS
 - **✓** Glass cockpit airplanes with FMS & GPS
 - **✓** Glass cockpit airplanes with FMS only
 - **✓** General Aviation Airplanes
 - **✓** Business Jets
- In summary, re-wiring the airplanes to provide analog and digital signals for ADS-B outputs may exceed the basic cost of the transponder installation
- Due to the various combinations of aircraft wiring many different types of STC/Service Bulletins may be required

ADS-B "Outputs" Navigation Vs. Surveillance Avionics Dependency Issues

- Dependencies currently exist for current transponder altitude reporting
 - **✓** Aircraft transmit altitude to controllers with mitigation
 - ✓ Controllers compare altitude reporting from the flight crew with the transponder altitude outputs each time the aircraft enter controlled airspace
- > Will additional mitigations be required for ADS-B outputs?
- Aircraft surveillance and navigations functions have typically been classified as "major" due in part to independence between the two functions
 - ✓ It may not be economically feasible to develop an ADS-B "outputs" avionics system in support of a "Hazardous" or "Catastrophic" Failure condition

ADS-B "Outputs" Own-Ship Position Source(s) (sheet 1 of 2)

- Two long range independent navigation sources are currently required for National air Space Operations
 - ✓ Navigation performance is based in part on flight phase (en route, terminal area, takeoff, approach, oceanic remote)
- Current Transport Category Airplanes have various navigation sensor sources:
 - ✓ ILS-LOC
 - ✓ GPS
 - **✓ DME-DME**
 - **✓ VOR-DME**
 - ✓ INS
- ➤ The airspace requirements for ADS-B "outputs will determine the best navigation sensor backup strategy

ADS-B "Outputs" Own-Ship Position Source(s) (sheet 2 of 2)

- General Aviation Aircraft
 - ✓ Rulemaking is currently in progress to allow the use of GPS WAAS without backup
 - ✓ If available, this would be ideal for ADS-B "outputs"
- Possible GPS / backup combinations
 - **✓** DME-DME
 - **✓ VOR-DME**
 - ✓ INS
 - **✓ LORAN**
- The airspace requirements for ADS-B "outputs will determine the best navigation sensor backup strategy

Questions & Wrap-Up

